home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Sprite 1984 - 1993
/
Sprite 1984 - 1993.iso
/
src
/
boot
/
netBoot.new
/
dev
/
zsreg.h
< prev
Wrap
Text File
|
1990-12-19
|
9KB
|
208 lines
/* @(#)zsreg.h 1.1 86/09/27 SMI */
/*
* Copyright (c) 1986 by Sun Microsystems, Inc.
*/
/*
* Zilog 8530 SCC Serial Communications Controller
*
* This is a dual uart chip with on-chip baud rate generators.
* It is about as brain-damaged as the typical modern uart chip,
* but it does have a lot of features as well as the usual lot of
* brain damage around addressing, write-onlyness, etc.
*/
/*
* Uart registers:
*
* There are 16 write registers and 9 read registers in each channel.
* As usual, the two channels are ALMOST orthogonal, not exactly. Most regs
* can only be written to, or read, but not both. To access one, you must
* first write to register 0 with the number of the register you
* are interested in, then read/write the actual value, and hope that
* nobody interrupts you in between.
*
* Note that the register&bit assignment is suspiciously like the Intel 8274.
* Do you think they read each others' data sheets? Can they decode them?
*/
/* bits in RR0 */
#define ZSRR0_RX_READY 0x01 /* received character available */
#define ZSRR0_TIMER 0x02 /* if R15_TIMER, timer reached 0 */
#define ZSRR0_TX_READY 0x04 /* transmit buffer empty */
#define ZSRR0_CD 0x08 /* CD input (latched if R15_CD) */
#define ZSRR0_SYNC 0x10 /* SYNC input (latched if R15_SYNC) */
#define ZSRR0_CTS 0x20 /* CTS input (latched if R15_CTS) */
#define ZSRR0_TXUNDER 0x40 /* (SYNC) Xmitter underran */
#define ZSRR0_BREAK 0x80 /* received break detected */
/* bits in RR1 */
#define ZSRR1_ALL_SENT 0x01 /* all chars fully transmitted */
#define ZSRR1_PE 0x10 /* parity error (latched, must reset) */
#define ZSRR1_DO 0x20 /* data overrun (latched, must reset) */
#define ZSRR1_FE 0x40 /* framing error (not latched) */
/* bits in R/WR2 -- interrupt vector number. */
/* NOTE that RR2 in channel A is unmodified, while in channel B it is
modified by the current status of the UARTs. (This is independent
of the setting of WR9_VIS.) If no interrupts are pending, the modified
status is Channel B Special Receive. It can be written from
either channel. */
/* bits in RR3 -- Interrupt Pending flags for both channels (this reg can
only be read in Channel A, tho. Thanks guys.) */
#define ZSRR3_IP_B_STAT 0x01 /* Ext/status int pending, chan B */
#define ZSRR3_IP_B_TX 0x02 /* Transmit int pending, chan B */
#define ZSRR3_IP_B_RX 0x04 /* Receive int pending, chan B */
#define ZSRR3_IP_A_STAT 0x08 /* Ditto for channel A */
#define ZSRR3_IP_A_TX 0x10
#define ZSRR3_IP_A_RX 0x20
/* bits in RR8 -- this is the same as reading the Data port */
/* bits in RR10 -- DPLL and SDLC Loop Mode status -- not entered*/
/*
* bits in R/WR12 -- lower byte of time constant for baud rate generator
* bits in R/WR13 -- upper byte of time constant for baud rate generator
*
* The following macro can be used to generate the baud rate generator's
* time constants. The parameters are the input clock to the BRG (eg,
* 5000000 for 5MHz) and the desired baud rate. This macro assumes that
* the clock needed is 16x the desired baud rate.
*/
#define ZSTIMECONST(inputclock, baudrate) (( inputclock / (2*baudrate*16)) - 2)
/* bits in R/WR15 -- interrupt enables for status conditions */
#define ZSR15_TIMER 0x02 /* ie if baud rate generator = 0 */
#define ZSR15_CD 0x08 /* ie transition on CD (car. det.) */
#define ZSR15_SYNC 0x10 /* ie transition on SYNC (gen purp) */
#define ZSR15_CTS 0x20 /* ie transition on CTS (clr to send) */
#define ZSR15_TX_UNDER 0x40 /* (SYNC) ie transmit underrun */
#define ZSR15_BREAK 0x80 /* ie on start, and end, of break */
/* Write register 0 -- common commands and Register Pointers */
#define ZSWR0_REG 0x0F /* mask: next reg to read/write */
#define ZSWR0_RESET_STATUS 0x10 /* reset status bit latches */
#define ZSWR0_FIRST_RX 0x20 /* in WR1_RX_FIRST_IE, enab next int */
#define ZSWR0_RESET_TXINT 0x28 /* reset transmitter interrupt */
#define ZSWR0_RESET_ERRORS 0x30 /* reset read character errors */
#define ZSWR0_CLR_INTR 0x38 /* Reset Interrupt In Service */
/* bits in WR1 */
#define ZSWR1_SIE 0x01 /* status change master int enable */
/* Also see R15 for individual enabs */
#define ZSWR1_TIE 0x02 /* transmitter interrupt enable */
#define ZSWR1_PARITY_SPECIAL 0x04 /* parity err causes special rx int */
#define ZSWR1_RX_FIRST_IE 0x08 /* r.i.e. on 1st char of msg */
#define ZSWR1_RIE 0x10 /* receiver interrupt enable */
/* There are other Receive interrupt options defined, see data sheet. */
/* bits in WR2 are defined above as R/WR2. */
/* bits in WR3 */
#define ZSWR3_RX_ENABLE 0x01 /* receiver enable */
#define ZSWR3_AUTO_CD_CTS 0x20 /* auto-enable CD&CTS rcv&xmit ctl */
#define ZSWR3_RX_5 0x00 /* receive 5-bit characters */
#define ZSWR3_RX_6 0x80 /* receive 6 bit characters */
#define ZSWR3_RX_7 0x40 /* receive 7 bit characters */
#define ZSWR3_RX_8 0xC0 /* receive 8 bit characters */
/* bits in WR4 */
#define ZSWR4_PARITY_ENABLE 0x01 /* Gen/check parity bit */
#define ZSWR4_PARITY_EVEN 0x02 /* Gen/check even parity */
#define ZSWR4_1_STOP 0x04 /* 1 stop bit */
#define ZSWR4_1_5_STOP 0x08 /* 1.5 stop bits */
#define ZSWR4_2_STOP 0x0C /* 2 stop bits */
#define ZSWR4_X1_CLK 0x00 /* clock is 1x */
#define ZSWR4_X16_CLK 0x40 /* clock is 16x */
#define ZSWR4_X32_CLK 0x80 /* clock is 32x */
#define ZSWR4_X64_CLK 0xC0 /* clock is 64x */
/* bits in WR5 */
#define ZSWR5_RTS 0x02 /* RTS output */
#define ZSWR5_TX_ENABLE 0x08 /* transmitter enable */
#define ZSWR5_BREAK 0x10 /* send break continuously */
#define ZSWR5_TX_5 0x00 /* transmit 5 bit chars or less */
#define ZSWR5_TX_6 0x40 /* transmit 6 bit characters */
#define ZSWR5_TX_7 0x20 /* transmit 7 bit characters */
#define ZSWR5_TX_8 0x60 /* transmit 8 bit characters */
#define ZSWR5_DTR 0x80 /* DTR output */
/* bits in WR6 -- Sync characters or SDLC address field. */
/* bits in WR7 -- Sync character or SDLC flag */
/* bits in WR8 -- transmit buffer. Same as writing to data port. */
/* bits in WR9 -- Master interrupt control and reset. Accessible thru
either channel, there's only one of them. */
#define ZSWR9_VECTOR_INCL_STAT 0x01 /* Include status bits in int vector */
#define ZSWR9_NO_VECTOR 0x02 /* Do not respond to int ack cycles */
#define ZSWR9_DIS_LOWER_CHAIN 0x04 /* Disable ints lower in daisy chain */
#define ZSWR9_MASTER_IE 0x08 /* Master interrupt enable */
#define ZSWR9_STAT_HIGH 0x10 /* Modify ivec bits 6-4, not 1-3 */
#define ZSWR9_RESET_CHAN_B 0x40 /* Reset just channel B */
#define ZSWR9_RESET_CHAN_A 0x80 /* Reset just channel A */
#define ZSWR9_RESET_WORLD 0xC0 /* Force hardware reset */
/* bits in WR10 -- SDLC, NRZI, FM control bits */
/* bits in WR11 -- clock mode control */
#define ZSWR11_TRXC_XTAL 0x00 /* TRxC output = xtal osc */
#define ZSWR11_TRXC_XMIT 0x01 /* TRxC output = xmitter clk */
#define ZSWR11_TRXC_BAUD 0x02 /* TRxC output = baud rate gen */
#define ZSWR11_TRXC_DPLL 0x03 /* TRxC output = Phase Locked Loop */
#define ZSWR11_TRXC_OUT_ENA 0x04 /* TRxC output enable (unless input) */
#define ZSWR11_TXCLK_RTXC 0x00 /* Tx clock is RTxC pin */
#define ZSWR11_TXCLK_TRXC 0x08 /* Tx clock is TRxC pin */
#define ZSWR11_TXCLK_BAUD 0x10 /* Tx clock is baud rate gen output */
#define ZSWR11_TXCLK_DPLL 0x18 /* Tx clock is Phase Locked Loop o/p */
#define ZSWR11_RXCLK_RTXC 0x00 /* Rx clock is RTxC pin */
#define ZSWR11_RXCLK_TRXC 0x20 /* Rx clock is TRxC pin */
#define ZSWR11_RXCLK_BAUD 0x40 /* Rx clock is baud rate gen output */
#define ZSWR11_RXCLK_DPLL 0x60 /* Rx clock is Phase Locked Loop o/p */
#define ZSWR11_RTXC_XTAL 0x80 /* RTxC uses crystal, not TTL signal */
/* bits in WR12 -- described above as R/WR12 */
/* bits in WR13 -- described above as R/WR13 */
/* bits in WR14 -- misc control bits, and DPLL control */
#define ZSWR14_BAUD_ENA 0x01 /* enables baud rate counter */
#define ZSWR14_BAUD_FROM_PCLK 0x02 /* Baud rate gen src = PCLK not RTxC */
#define ZSWR14_DTR_IS_REQUEST 0x04 /* Changes DTR line to DMA Request */
#define ZSWR14_AUTO_ECHO 0x08 /* Echoes RXD to TXD */
#define ZSWR14_LOCAL_LOOPBACK 0x10 /* Echoes TX to RX in chip */
#define ZSWR14_DPLL_NOP 0x00 /* These 8 commands are mut. exclu. */
#define ZSWR14_DPLL_SEARCH 0x20 /* Enter search mode in DPLL */
#define ZSWR14_DPLL_RESET 0x40 /* Reset missing clock in DPLL */
#define ZSWR14_DPLL_DISABLE 0x60 /* Disable DPLL */
#define ZSWR14_DPLL_SRC_BAUD 0x80 /* Source for DPLL is baud rate gen */
#define ZSWR14_DPLL_SRC_RTXC 0xA0 /* Source for DPLL is RTxC pin */
#define ZSWR14_DPLL_FM 0xC0 /* DPLL should run in FM mode */
#define ZSWR14_DPLL_NRZI 0xE0 /* DPLL should run in NRZI mode */
/* bits in WR15 -- described above as R/WR15 */
/*
* UART register addressing
*
* It would be nice if they used 4 address pins to address 15 registers,
* but they only used 1. So you have to write to the control port then
* read or write it; the 2nd cycle is done to whatever register number
* you wrote in the first cycle.
*
* The data register can also be accessed as Read/Write register 8.
*/
struct zscc_device {
unsigned char zscc_control;
unsigned char :8; /* Philler */
unsigned char zscc_data;
unsigned char :8; /* Filler */
};